The WHO water safety plan approach: a tool for preparing for floods

Oliver Schmoll
Programme Manager
Water and Sanitation

Vienna, Austria
28 October 2014
WHO role in 2014 Balkan flooding events

Public health advice

• **WHO grade 2 emergency:**
 – Deployment of WHO staff
 – Deployment of water purification equipment and emergency health kits

• Advice and support for coordinated and effective **health sector response:**
 – Water, sanitation and hygiene
 – Waste and dead animal management
 – Chemical hazards and vector control

• Public health advice to **general public**

Climate change and water
Preparedness planning

- Effects of climate change impact precipitation patterns
- Increased frequency, duration and intensity of rainfall
- Increased risk of floods
- Need for increased resilience of water utilities
- WHO water safety plan approach supports adaptation management
WHO Guidelines for drinking-water quality

Public health benchmark

- International **point of reference** for drinking-water regulation
- **Public health benchmark** for delivery of safe drinking-water
- Rigorous health **assessment of agents** in drinking-water (guideline values)
- Recommendation of **water safety plans** (WSP) as codified safe management

The WHO water safety plan approach
28 October 2014

Framework for safe drinking-water
Water safety plans

Health-based targets
(national regulatory body)

Water safety plan
(water supplier)

Independent surveillance
(surveillance agency)

“The most effective means of consistently ensuring the safety of a drinking-water supply is through the use of a comprehensive risk assessment and risk management approach that encompasses all steps in water supply from catchment to consumer.”
WSP in a nutshell
Steps’ overview

- Establish WSP team
- Describe and map the water supply system
- Identify hazards and assess risks
- Review adequacy of preventive control measures
- Prioritize and incrementally implement improvements
- Establish operational procedures and verify effectiveness of WSP
- Review and improve WSP

Catchment to consumer
WSP system assessment

Hazard analysis

- Identify hazards
- Assess hazard severity
- Identify hazardous events
- Assess event likelihood
WSP system assessment

Example hazard analysis

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Supply step</th>
<th>Hazardous event</th>
</tr>
</thead>
<tbody>
<tr>
<td>M & P</td>
<td>Catchment</td>
<td>High loads of turbidity (runoff) and pathogens (sewage overflow) in source water</td>
</tr>
<tr>
<td>M & C</td>
<td>Abstraction</td>
<td>Ingress of chemically and/or microbiologically contaminated flood water into (damaged) wells</td>
</tr>
<tr>
<td>M</td>
<td>Treatment</td>
<td>Source water quality beyond designed treatment capacities (i.e. coagulation, filtration and disinfection)</td>
</tr>
<tr>
<td>P</td>
<td>Treatment</td>
<td>Interruption of supply due to power failure</td>
</tr>
<tr>
<td>M</td>
<td>Distribution</td>
<td>Damaged/disrupted mains with ingress of flood water and/or sewerage</td>
</tr>
</tbody>
</table>
WSP system assessment
Hazard analysis

• **Step back and analyze:** *What can go wrong where?*

• **No generic assumptions:** supply **system specific**

• **Identify hazardous events** that introduce hazards:

 – Natural causes (e.g. heavy rainfall, floods, droughts)
 – Technical defects (e.g. disturbance of treatment)
 – Malpractices (e.g. inadequate maintenance)
 – Accidents (e.g. spill of chemicals)

• **Identify microbiological, chemical and physical hazards** that cause harm to public health
WSP system assessment

Risk assessment

- **Identify hazards**
- **Identify hazardous events**
- **Assess hazard severity**
- **Assess event likelihood**

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Severity</th>
<th>Insignificant (Score: 1)</th>
<th>Minor (Score: 2)</th>
<th>Moderate (Score: 4)</th>
<th>Major (Score: 8)</th>
<th>Catastrophic (Score: 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almost certain (Score: 5)</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Likely (Score: 4)</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Foresseeable (Score: 3)</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Unlikely (Score: 2)</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Most unlikely (Score: 1)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Initial risk
WSP system assessment
Risk assessment

- **Ranking and prioritisation** of risks
- **Events can be classified:**
 - What is a risk to public health?
 - In which areas elevated management attention is needed?
 - What improvements and upgrades are important to close gaps in resilience?
WSP system assessment
Validation of control measures

- Identify hazards
- Assess hazard severity
- Identify hazardous events
- Assess event likelihood
- Prioritize, plan and implement incremental improvements and upgrades
- Identify existing control measures and assess their adequacy and effectiveness

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Insignificant (Score: 1)</th>
<th>Minor (Score: 2)</th>
<th>Moderate (Score: 4)</th>
<th>Major (Score: 8)</th>
<th>Catastrophic (Score: 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almost certain</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>Likely</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>Foreseeable</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>Unlikely</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Most unlikely</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

Severity
- Catastrophic (Score: 16)
- Major (Score: 8)
- Moderate (Score: 4)
- Minor (Score: 2)
- Insignificant (Score: 1)

Intitial risk
Residual risk
WSP system assessment

Outcome

<table>
<thead>
<tr>
<th>Supply step</th>
<th>Event</th>
<th>Hazard</th>
<th>L</th>
<th>S</th>
<th>Initial risk</th>
<th>Validation of existing controls</th>
<th>L</th>
<th>S</th>
<th>Residual risk</th>
<th>Improved or new controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATCH</td>
<td>xxxxx</td>
<td>CHEM</td>
<td>1</td>
<td>2</td>
<td>xxxxxxx</td>
<td>xxxxxxx</td>
<td>1</td>
<td>2</td>
<td>xxxxxxx</td>
<td>xxxxxxx</td>
</tr>
<tr>
<td>ABST</td>
<td>xxxxx</td>
<td>MICRO</td>
<td>4</td>
<td>16</td>
<td>xxxxxxx</td>
<td>xxxxxxx</td>
<td>1</td>
<td>16</td>
<td>xxxxxxx</td>
<td>xxxxxxx</td>
</tr>
<tr>
<td>TREAT</td>
<td>xxxxx</td>
<td>CHEM</td>
<td>3</td>
<td>4</td>
<td>xxxxxxx</td>
<td>xxxxxxx</td>
<td>1</td>
<td>2</td>
<td>xxxxxxx</td>
<td>xxxxxxx</td>
</tr>
<tr>
<td>STOR</td>
<td>xxxxx</td>
<td>CHEM</td>
<td>2</td>
<td>2</td>
<td>xxxxxxx</td>
<td>xxxxxxx</td>
<td>2</td>
<td>2</td>
<td>xxxxxxx</td>
<td>xxxxxxx</td>
</tr>
<tr>
<td>DISTR</td>
<td>xxxxx</td>
<td>MICRO</td>
<td>5</td>
<td>8</td>
<td>xxxxxxx</td>
<td>xxxxxxx</td>
<td>5</td>
<td>8</td>
<td>xxxxxxx</td>
<td>xxxxxxx</td>
</tr>
</tbody>
</table>
WSP system assessment
Improve and upgrade planning

- **Significant residual risks** require further investigation
- **Incremental improvement** is pivotal:
 - Identified capital investments for medium and/or long-term infrastructure upgrades
 - Optimized managerial and operational procedures
 - Enhanced preparedness planning
 - Improved emergency response procedures
 - Adjusted communications with health authorities and the public
WSP disaster/emergency planning

Core elements

- **Response actions** (incl. increased monitoring)
- **Responsibilities and authorities** (internal and external)
- Plans for **emergency water supplies**
- **Communication protocols and strategies**, including notification procedures (i.e. internal, health authority, media and public)
- **Regular practices** of emergency procedures
- **Post-incident evaluations**
Added value of WSP
Reported by water utilities

• Health gains
• Improved operations through more clarity on supply related risks
• Reduction of water quality incidents
• Fosters due diligence
• Provides rationale for decision making
• Stimulation of multi-stakeholder communication
• WSP supports leverage of external financial support
Incremental uptake
Increasing reality in Europe

- One third of countries have **provisions on WSP-type approaches** in place:
 - “Regulatory” implementation strategy with minimum requirements and enforcement mechanisms (e.g. Belgium, Hungary, Iceland, Switzerland, United Kingdom)
 - “Soft” implementation strategy triggering that water suppliers find WSPs appropriate (e.g. Germany, Portugal)

- **EU Drinking Water Directive**

- Priority programme area under the **WHO/UNECE Protocol on Water and Health** (ALB, BIH, CRO, SRB)
WSP resource materials

Water Safety Plan Manual:
Step-by-step risk management for drinking-water suppliers

Source: http://www.who.int/water_sanitation_health/publication_9789241562638

Source: http://www.who.int/water_sanitation_health/publications/2012/water_supplies

Thank you
Hvala

Source: Rod Shaw